Source code for cadquery.selectors

"""
    Copyright (C) 2011-2015  Parametric Products Intellectual Holdings, LLC

    This file is part of CadQuery.

    CadQuery is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    CadQuery is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; If not, see <http://www.gnu.org/licenses/>
"""

import re
import math
from cadquery import Vector, Edge, Vertex, Face, Solid, Shell, Compound
from collections import defaultdict
from pyparsing import Literal, Word, nums, Optional, Combine, oneOf, upcaseTokens,\
    CaselessLiteral, Group, infixNotation, opAssoc, Forward,\
    ZeroOrMore, Keyword
from functools import reduce


[docs]class Selector(object): """ Filters a list of objects Filters must provide a single method that filters objects. """
[docs] def filter(self, objectList): """ Filter the provided list :param objectList: list to filter :type objectList: list of FreeCAD primatives :return: filtered list The default implementation returns the original list unfiltered """ return objectList
def __and__(self, other): return AndSelector(self, other) def __add__(self, other): return SumSelector(self, other) def __sub__(self, other): return SubtractSelector(self, other) def __neg__(self): return InverseSelector(self)
[docs]class NearestToPointSelector(Selector): """ Selects object nearest the provided point. If the object is a vertex or point, the distance is used. For other kinds of shapes, the center of mass is used to to compute which is closest. Applicability: All Types of Shapes Example:: CQ(aCube).vertices(NearestToPointSelector((0,1,0)) returns the vertex of the unit cube closest to the point x=0,y=1,z=0 """ def __init__(self, pnt): self.pnt = pnt
[docs] def filter(self, objectList): def dist(tShape): return tShape.Center().sub(Vector(*self.pnt)).Length # if tShape.ShapeType == 'Vertex': # return tShape.Point.sub(toVector(self.pnt)).Length # else: # return tShape.CenterOfMass.sub(toVector(self.pnt)).Length return [min(objectList, key=dist)]
class BoxSelector(Selector): """ Selects objects inside the 3D box defined by 2 points. If `boundingbox` is True only the objects that have their bounding box inside the given box is selected. Otherwise only center point of the object is tested. Applicability: all types of shapes Example:: CQ(aCube).edges(BoxSelector((0,1,0), (1,2,1)) """ def __init__(self, point0, point1, boundingbox=False): self.p0 = Vector(*point0) self.p1 = Vector(*point1) self.test_boundingbox = boundingbox def filter(self, objectList): result = [] x0, y0, z0 = self.p0.toTuple() x1, y1, z1 = self.p1.toTuple() def isInsideBox(p): # using XOR for checking if x/y/z is in between regardless # of order of x/y/z0 and x/y/z1 return ((p.x < x0) ^ (p.x < x1)) and \ ((p.y < y0) ^ (p.y < y1)) and \ ((p.z < z0) ^ (p.z < z1)) for o in objectList: if self.test_boundingbox: bb = o.BoundingBox() if isInsideBox(Vector(bb.xmin, bb.ymin, bb.zmin)) and \ isInsideBox(Vector(bb.xmax, bb.ymax, bb.zmax)): result.append(o) else: if isInsideBox(o.Center()): result.append(o) return result class BaseDirSelector(Selector): """ A selector that handles selection on the basis of a single direction vector """ def __init__(self, vector, tolerance=0.0001): self.direction = vector self.TOLERANCE = tolerance def test(self, vec): "Test a specified vector. Subclasses override to provide other implementations" return True def filter(self, objectList): """ There are lots of kinds of filters, but for planes they are always based on the normal of the plane, and for edges on the tangent vector along the edge """ r = [] for o in objectList: # no really good way to avoid a switch here, edges and faces are simply different! if type(o) == Face: # a face is only parallell to a direction if it is a plane, and its normal is parallel to the dir normal = o.normalAt(None) if self.test(normal): r.append(o) elif type(o) == Edge and (o.geomType() == 'LINE' or o.geomType() == 'PLANE'): # an edge is parallel to a direction if its underlying geometry is plane or line tangent = o.tangentAt() if self.test(tangent): r.append(o) return r
[docs]class ParallelDirSelector(BaseDirSelector): """ Selects objects parallel with the provided direction Applicability: Linear Edges Planar Faces Use the string syntax shortcut \|(X|Y|Z) if you want to select based on a cardinal direction. Example:: CQ(aCube).faces(ParallelDirSelector((0,0,1)) selects faces with a normals in the z direction, and is equivalent to:: CQ(aCube).faces("|Z") """
[docs] def test(self, vec): return self.direction.cross(vec).Length < self.TOLERANCE
[docs]class DirectionSelector(BaseDirSelector): """ Selects objects aligned with the provided direction Applicability: Linear Edges Planar Faces Use the string syntax shortcut +/-(X|Y|Z) if you want to select based on a cardinal direction. Example:: CQ(aCube).faces(DirectionSelector((0,0,1)) selects faces with a normals in the z direction, and is equivalent to:: CQ(aCube).faces("+Z") """
[docs] def test(self, vec): return abs(self.direction.getAngle(vec) < self.TOLERANCE)
[docs]class PerpendicularDirSelector(BaseDirSelector): """ Selects objects perpendicular with the provided direction Applicability: Linear Edges Planar Faces Use the string syntax shortcut #(X|Y|Z) if you want to select based on a cardinal direction. Example:: CQ(aCube).faces(PerpendicularDirSelector((0,0,1)) selects faces with a normals perpendicular to the z direction, and is equivalent to:: CQ(aCube).faces("#Z") """
[docs] def test(self, vec): angle = self.direction.getAngle(vec) r = (abs(angle) < self.TOLERANCE) or ( abs(angle - math.pi) < self.TOLERANCE) return not r
[docs]class TypeSelector(Selector): """ Selects objects of the prescribed topological type. Applicability: Faces: Plane,Cylinder,Sphere Edges: Line,Circle,Arc You can use the shortcut selector %(PLANE|SPHERE|CONE) for faces, and %(LINE|ARC|CIRCLE) for edges. For example this:: CQ(aCube).faces ( TypeSelector("PLANE") ) will select 6 faces, and is equivalent to:: CQ(aCube).faces( "%PLANE" ) """ def __init__(self, typeString): self.typeString = typeString.upper()
[docs] def filter(self, objectList): r = [] for o in objectList: if o.geomType() == self.typeString: r.append(o) return r
[docs]class DirectionMinMaxSelector(Selector): """ Selects objects closest or farthest in the specified direction Used for faces, points, and edges Applicability: All object types. for a vertex, its point is used. for all other kinds of objects, the center of mass of the object is used. You can use the string shortcuts >(X|Y|Z) or <(X|Y|Z) if you want to select based on a cardinal direction. For example this:: CQ(aCube).faces ( DirectionMinMaxSelector((0,0,1),True ) Means to select the face having the center of mass farthest in the positive z direction, and is the same as: CQ(aCube).faces( ">Z" ) """ def __init__(self, vector, directionMax=True, tolerance=0.0001): self.vector = vector self.max = max self.directionMax = directionMax self.TOLERANCE = tolerance
[docs] def filter(self, objectList): def distance(tShape): return tShape.Center().dot(self.vector) # import OrderedDict from collections import OrderedDict # make and distance to object dict objectDict = {distance(el): el for el in objectList} # transform it into an ordered dict objectDict = OrderedDict(sorted(list(objectDict.items()), key=lambda x: x[0])) # find out the max/min distance if self.directionMax: d = list(objectDict.keys())[-1] else: d = list(objectDict.keys())[0] # return all objects at the max/min distance (within a tolerance) return [o for o in objectList if abs(d - distance(o)) < self.TOLERANCE]
class DirectionNthSelector(ParallelDirSelector): """ Selects nth object parallel (or normal) to the specified direction Used for faces and edges Applicability: Linear Edges Planar Faces """ def __init__(self, vector, n, directionMax=True, tolerance=0.0001): self.direction = vector self.max = max self.directionMax = directionMax self.TOLERANCE = tolerance self.N = n def filter(self, objectList): # select first the objects that are normal/parallel to a given dir objectList = super(DirectionNthSelector, self).filter(objectList) def distance(tShape): return tShape.Center().dot(self.direction) # calculate how many digits of precision do we need digits = int(1 / self.TOLERANCE) # make a distance to object dict # this is one to many mapping so I am using a default dict with list objectDict = defaultdict(list) for el in objectList: objectDict[round(distance(el), digits)].append(el) # choose the Nth unique rounded distance nth_distance = sorted(list(objectDict.keys()), reverse=not self.directionMax)[self.N] # map back to original objects and return return objectDict[nth_distance] class BinarySelector(Selector): """ Base class for selectors that operates with two other selectors. Subclass must implement the :filterResults(): method. """ def __init__(self, left, right): self.left = left self.right = right def filter(self, objectList): return self.filterResults(self.left.filter(objectList), self.right.filter(objectList)) def filterResults(self, r_left, r_right): raise NotImplementedError class AndSelector(BinarySelector): """ Intersection selector. Returns objects that is selected by both selectors. """ def filterResults(self, r_left, r_right): # return intersection of lists return list(set(r_left) & set(r_right)) class SumSelector(BinarySelector): """ Union selector. Returns the sum of two selectors results. """ def filterResults(self, r_left, r_right): # return the union (no duplicates) of lists return list(set(r_left + r_right)) class SubtractSelector(BinarySelector): """ Difference selector. Substract results of a selector from another selectors results. """ def filterResults(self, r_left, r_right): return list(set(r_left) - set(r_right)) class InverseSelector(Selector): """ Inverts the selection of given selector. In other words, selects all objects that is not selected by given selector. """ def __init__(self, selector): self.selector = selector def filter(self, objectList): # note that Selector() selects everything return SubtractSelector(Selector(), self.selector).filter(objectList) def _makeGrammar(): """ Define the simple string selector grammar using PyParsing """ # float definition point = Literal('.') plusmin = Literal('+') | Literal('-') number = Word(nums) integer = Combine(Optional(plusmin) + number) floatn = Combine(integer + Optional(point + Optional(number))) # vector definition lbracket = Literal('(') rbracket = Literal(')') comma = Literal(',') vector = Combine(lbracket + floatn('x') + comma + floatn('y') + comma + floatn('z') + rbracket) # direction definition simple_dir = oneOf(['X', 'Y', 'Z', 'XY', 'XZ', 'YZ']) direction = simple_dir('simple_dir') | vector('vector_dir') # CQ type definition cqtype = oneOf(['Plane', 'Cylinder', 'Sphere', 'Cone', 'Line', 'Circle', 'Arc'], caseless=True) cqtype = cqtype.setParseAction(upcaseTokens) # type operator type_op = Literal('%') # direction operator direction_op = oneOf(['>', '<']) # index definition ix_number = Group(Optional('-') + Word(nums)) lsqbracket = Literal('[').suppress() rsqbracket = Literal(']').suppress() index = lsqbracket + ix_number('index') + rsqbracket # other operators other_op = oneOf(['|', '#', '+', '-']) # named view named_view = oneOf(['front', 'back', 'left', 'right', 'top', 'bottom']) return direction('only_dir') | \ (type_op('type_op') + cqtype('cq_type')) | \ (direction_op('dir_op') + direction('dir') + Optional(index)) | \ (other_op('other_op') + direction('dir')) | \ named_view('named_view') _grammar = _makeGrammar() # make a grammar instance class _SimpleStringSyntaxSelector(Selector): """ This is a private class that converts a parseResults object into a simple selector object """ def __init__(self, parseResults): # define all token to object mappings self.axes = { 'X': Vector(1, 0, 0), 'Y': Vector(0, 1, 0), 'Z': Vector(0, 0, 1), 'XY': Vector(1, 1, 0), 'YZ': Vector(0, 1, 1), 'XZ': Vector(1, 0, 1) } self.namedViews = { 'front': (Vector(0, 0, 1), True), 'back': (Vector(0, 0, 1), False), 'left': (Vector(1, 0, 0), False), 'right': (Vector(1, 0, 0), True), 'top': (Vector(0, 1, 0), True), 'bottom': (Vector(0, 1, 0), False) } self.operatorMinMax = { '>': True, '<': False, '+': True, '-': False } self.operator = { '+': DirectionSelector, '-': DirectionSelector, '#': PerpendicularDirSelector, '|': ParallelDirSelector} self.parseResults = parseResults self.mySelector = self._chooseSelector(parseResults) def _chooseSelector(self, pr): """ Sets up the underlying filters accordingly """ if 'only_dir' in pr: vec = self._getVector(pr) return DirectionSelector(vec) elif 'type_op' in pr: return TypeSelector(pr.cq_type) elif 'dir_op' in pr: vec = self._getVector(pr) minmax = self.operatorMinMax[pr.dir_op] if 'index' in pr: return DirectionNthSelector(vec, int(''.join(pr.index.asList())), minmax) else: return DirectionMinMaxSelector(vec, minmax) elif 'other_op' in pr: vec = self._getVector(pr) return self.operator[pr.other_op](vec) else: args = self.namedViews[pr.named_view] return DirectionMinMaxSelector(*args) def _getVector(self, pr): """ Translate parsed vector string into a CQ Vector """ if 'vector_dir' in pr: vec = pr.vector_dir return Vector(float(vec.x), float(vec.y), float(vec.z)) else: return self.axes[pr.simple_dir] def filter(self, objectList): """ selects minimum, maximum, positive or negative values relative to a direction [+\|-\|<\|>\|] \<X\|Y\|Z> """ return self.mySelector.filter(objectList) def _makeExpressionGrammar(atom): """ Define the complex string selector grammar using PyParsing (which supports logical operations and nesting) """ # define operators and_op = Literal('and') or_op = Literal('or') delta_op = oneOf(['exc', 'except']) not_op = Literal('not') def atom_callback(res): return _SimpleStringSyntaxSelector(res) # construct a simple selector from every matched atom.setParseAction(atom_callback) # define callback functions for all operations def and_callback(res): # take every secend items, i.e. all operands items = res.asList()[0][::2] return reduce(AndSelector, items) def or_callback(res): # take every secend items, i.e. all operands items = res.asList()[0][::2] return reduce(SumSelector, items) def exc_callback(res): # take every secend items, i.e. all operands items = res.asList()[0][::2] return reduce(SubtractSelector, items) def not_callback(res): right = res.asList()[0][1] # take second item, i.e. the operand return InverseSelector(right) # construct the final grammar and set all the callbacks expr = infixNotation(atom, [(and_op, 2, opAssoc.LEFT, and_callback), (or_op, 2, opAssoc.LEFT, or_callback), (delta_op, 2, opAssoc.LEFT, exc_callback), (not_op, 1, opAssoc.RIGHT, not_callback)]) return expr _expression_grammar = _makeExpressionGrammar(_grammar)
[docs]class StringSyntaxSelector(Selector): """ Filter lists objects using a simple string syntax. All of the filters available in the string syntax are also available ( usually with more functionality ) through the creation of full-fledged selector objects. see :py:class:`Selector` and its subclasses Filtering works differently depending on the type of object list being filtered. :param selectorString: A two-part selector string, [selector][axis] :return: objects that match the specified selector ***Modfiers*** are ``('|','+','-','<','>','%')`` :\|: parallel to ( same as :py:class:`ParallelDirSelector` ). Can return multiple objects. :#: perpendicular to (same as :py:class:`PerpendicularDirSelector` ) :+: positive direction (same as :py:class:`DirectionSelector` ) :-: negative direction (same as :py:class:`DirectionSelector` ) :>: maximize (same as :py:class:`DirectionMinMaxSelector` with directionMax=True) :<: minimize (same as :py:class:`DirectionMinMaxSelector` with directionMax=False ) :%: curve/surface type (same as :py:class:`TypeSelector`) ***axisStrings*** are: ``X,Y,Z,XY,YZ,XZ`` or ``(x,y,z)`` which defines an arbitrary direction It is possible to combine simple selectors together using logical operations. The following operations are suuported :and: Logical AND, e.g. >X and >Y :or: Logical OR, e.g. |X or |Y :not: Logical NOT, e.g. not #XY :exc(ept): Set difference (equivalent to AND NOT): |X exc >Z Finally, it is also possible to use even more complex expressions with nesting and arbitrary number of terms, e.g. (not >X[0] and #XY) or >XY[0] Selectors are a complex topic: see :ref:`selector_reference` for more information """ def __init__(self, selectorString): """ Feed the input string through the parser and construct an relevant complex selector object """ self.selectorString = selectorString parse_result = _expression_grammar.parseString(selectorString, parseAll=True) self.mySelector = parse_result.asList()[0]
[docs] def filter(self, objectList): """ Filter give object list through th already constructed complex selector object """ return self.mySelector.filter(objectList)